著名数学家陈省身曾说过:“了解历史的变化是了解这门科学的一个步骤。”李文林先生的《数学史概论》即为我们了解数学提供了重要途径,本书系统全面,且一反寻常论述类著作的晦涩,理性与趣味并举,严谨与生动兼备,尽显数学的神圣与魅力。成书的初衷是为一些高等院校的数学史课程提供一个参考范本,但事实上,本书除了为数学专业师生提供参考外,也在不同程度上满足了对数学史感兴趣的各类读者的需求,自2000年8月出版第1版以来,深受广大读者的推崇。
初读此书时,我还是一名大三的学生,一次偶然的翻阅,为我打开了新世界的大门,那些陌生的、新奇的领域逐渐豁然开朗。原来数学的演化经历了一个漫长而又曲折的过程,从远古到现代,它不断发展完善着;原来每一个看似简单的定理都承载着一个不为人知的故事,它简单却厚重;原来数学是一门理性却并不冰冷的学科,它来源于生活而又高于生活,鲜活且生动。正如李文林先生在书中所言“数学的发展与人类的生产实践和社会需求密切相关。对自然的探索是数学研究最丰富的源泉。但是数学的发展对于现实世界又表现出相对的独立性。一门数学分支或一种数学理论已经建立。人们便可在不受外部影响的情况下,仅靠逻辑思维而将它向前推进。并由此导致新理论与新思想的产生。”它是一门科学,也是一种语言,有自己的文字符号,有自己的内在逻辑体系。它从无到有,从零散到系统,从微小到庞大,它所经历的每一次危机,又由此所取得的每一个重大突破,让我为之震撼与景仰。
如今我已是一名入职两年的数学教师,再看《数学史概论》,又能从中汲取许多教学灵感。学生对数学没兴趣,认为数学枯燥,学无所用,一方面是因为多年被数学作业支配的恐惧,另一方面也来自于他们对数学的不了解。倘若在一个孩子还小的时候,就依据他的认知水平,给他讲一些数学家的和数学发展中的逸闻趣事,例如,泰勒斯测量金字塔、阿基米德给国王测量王冠体积、祖冲之父子与圆周率、数学王子高斯与其卓越的数学天赋、费马与费马大定理、理发师悖论与芝诺悖论等等,那么,在日后的数学学习中,他也许不会对数学产生抵触情绪。在学习到相关内容时,看到一个个熟悉的人名,便会自然而然地产生亲切感和兴趣,学习起来事半功倍。
而作为高中数学教师,我们也可以将数学史融入平时的数学教学中,让学生在数学学习过程中,不仅接触到冷冰冰的知识,作文www.yuananren.com还接触到知识背后所蕴藏的数学家的情感和意志,体味其中的数学思想,感受到数学的文化魅力。比如在必修一“函数与方程”的教学中,可以给学生讲,从塔塔利亚到阿贝尔和伽罗瓦的方程发展史,让学生明白利用“函数与方程的关系”求解方程近似解的意义。在必修二解析几何的教学中,可以根据笛卡尔的“通用数学”思路,引导学生发现:解决几何问题的一大途径,是将它转化为代数问题。
数学是一门历史性或者说是累积性很强的学科,我们学习数学的过程应与人类认识数学的顺序一致,这样更符合我们的数学认知规律。学习数学的道路上遇到的每一个问题,或许都有数学家为它绞尽脑汁过。读数学史,可以帮助我们了解数学演化的真实过程,体味数学思想的诞生与发展,可以使我们从前人的探索和奋斗中汲取教训和经验,获得鼓舞和增强信心。那些悠悠长河中的数学人所做的每一份努力,都是为了让我们可以站在他们的肩膀上,更清楚地认识这个世界。
数学是各个时代人类文明的标志之一,是推进人类文明的重要力量,数学史不仅是我们这些数学相关人士需要了解的,任何一个关心人类文明发展的人都值得了解。